学力検査問題 [化学] (その1) (2022- 般 I A)

解答はすべて解答用紙に記入せよ。

1	下の表は周期表の一部を表したものである	る。この表について,	あるいはこの表を参考に,	元素に関する	(1) ~	(3)
	- の問いに答えよ。					

	1	2	13	14	15	16	17	18
2	Li	Ве	В	ア	1	ウ	Н	Ne
3	才	カ	Al	Si	P	+	ク	ケ
4	K	П	Ga	Ge	As	Se	Br	Kr

(1) ア ~ コ の各元素の元素記号を記せ。
(2) 次の文の サ ~ ソ に適切な数を記入し、文を完成せよ。
第 2 周期の元素のうち、 1 価の陰イオンに最もなりやすい元素が属するのは $\boxed{}$ 族であり、 1 価の
陽イオンに最もなりやすい元素が属するのは シ 族である。 また, イオン化エネルギーが最も高い
元素が属するのは ス 族であり、電気陰性度が最も高い元素が属するのは セ 族であり、単体
のイオン化傾向が非常に高いため起電力が大きい電池の負極に用いられる元素が属するのは 族で
ある。
(3) 次の文の タ ~ テ に適切な語句を記入し、文を完成せよ。
周期表の同じ族に属している元素は性質が似ている場合が多く,固有の名称が付けられているものもある。
例えば,水素を除く 1 族の元素を $$ カ 元素という。また, 17 族元素を $\boxed{$ 元素といい, 18 族
元素を プ 元素という。
元素を大別すると典型元素と遷移元素に分類されるが、上記の表中の元素はすべて テ 元素である。

学力検査問題[化学](その2)

(2022- 般 IA)

解答はすべて解答用紙に記入せよ。

2	次の文を読み,	(1)~(4)の問いに答えよ。

2.0 mol/L のアンモニア水がある。ある温度において、アンモニアは水溶液中で一部の分子だけが電離して ア イオンと イ イオンを生じ、次のような平衡状態に達している。

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

このような平衡状態を $\dot{\mathbf{p}}$ という。このとき, \mathbf{r} の法則が成り立つので,アンモニアの電離定数 K_b は,次式で表すことができる。

なお、電離定数 K_b は、温度が変化しなければ常に一定の値を示す。

- (2) 反応が右に進むとき、ブレンステッド・ローリーの定義において、下線部の物質は『酸』あるいは『塩基』 のどちらとしてはたらいているか答えよ。
- (3) 反応が平衡状態のとき、操作 i ~iv を行うと平衡はどちらに移動するか。解答用紙の解答欄に該当する用語を○で囲め。
 - i 塩化水素を通じる。
 - ii 水酸化カリウムを加える。
 - iii 塩化アンモニウムを加える。
 - iv 水で希釈して体積を 2 倍にする。
- (4) この水溶液の pH を小数第 1 位まで求めよ。ただし、このアンモニアの電離度は 0.003 とする。必要ならば、水のイオン積 $K_{\rm w}$ = $1.0 \times 10^{-14}\,{\rm mol^2/L^2}$, $\log_{10} 2$ = 0.3, $\log_{10} 3$ = 0.48 を用いよ。

学力検査問題[化学](その3)

解答はすべて解答用紙に記入せよ。

3	次の文を読み,(1)~(5)の問いに答えよ。
	アルミニウムの単体は工業的に次のようにつくられる。
	主成分が $Al_2O_3 \cdot nH_2O$ の $oldsymbol{\mathcal{P}}$ を精製して $oldsymbol{\mathcal{I}}$ ともよばれる純粋な酸化アルミニウムをつくり,これ
	を約 $1000^\circ\mathrm{C}$ に加熱した氷晶石に加えて溶かし, 炭素電極を用いて電気分解すると, $\boxed{}$ 極側にアルミ
	ニウムの単体が得られる。このようにして、金属の単体を得る操作を エ という。
	単体の アルミニウムは酸の水溶液にも強塩基の水溶液にも溶けるが, 濃硝酸には溶けない。アルミニウムは
	熱や電気をよく伝え,加工しやすいために多方面で用いられている。アルミニウムに少量の銅,マグネシウムお
	よびマンガンを含む合金である オ は航空機材料に利用されている。
	硫酸アルミニウムと硫酸カリウムの混合水溶液を濃縮すると、無色透明な正八面体の結晶が得られる。この結
	晶は、硫酸カリウムアルミニウム十二水和物であり、 カとよばれる。 カ の水溶液にアンモニア水
	を加えると、白色の沈澱が生じる。
	(1) 文中の ア ~ カ に適切な語を入れ、文を完成せよ。
	(2) 下線部①について、アルミニウム 54.0 kg を製造するのに必要な電気量は何 $\mathbb C$ か。ただし、アルミニウムの
	原子量は 27 ,ファラデー定数は 9.65×10^4 C/mol とする。なお,数値は $y \times 10^{~\rm z}$ ($1 \leq y < 10$)の形式
	で記せ。y は小数第 2 位まで,z は整数でそれぞれ記せ。必要ならば,四捨五入を用いよ。
	(3)下線部②について、アルミニウムと塩酸の反応を化学反応式で示せ。
	(4) 下線部③の理由を述べよ。
	(4) 下線部 ④ の変化をイオン反応式で示せ。
	(3) 自然印色の変化を行みを反応によるがで、
4	炭化水素に関する次の文を読み、(1)~(3)の問いに答えよ。
	炭化水素のうち,炭素原子の間に三重結合を一つもつ鎖式炭化水素を $ olimits_{m{r}} olimits_{$
	される。 n が 2 の化合物を $ oldsymbol{ \prime }$ といい, 実験室的には $ oldsymbol{ \dot D }$ に水を作用させてつくることができる。
	1 分子の $oxedow$ に 1 分子の臭素分子を常温で反応させると、臭素の $oxedow$ 色が消え、 $C_2H_2Br_2$ の分子式
	をもつ オ になる。
	オ には カ 異性体が存在し、さらにもう 1分子の臭素分子を反応させると、 単結合のみからな
	る化合物になる。
	(1) ア ~
	(2) 下線部の化学反応式を記せ。
	(3) オ の カ 異性体の構造式をすべて記せ。

2022	受験	
般 I A	番号	

解答用紙 [化学]

1	(1)	ア		1				ゥ				ェ				オ		
	(1)	カ		+				ク				ケ						
	(2)	サ		シ				ス				セ				ソ		
	(3)	タ			チ					ッ				-	テ			
2		ア								1								
	(1)									エ								
		オ								(2)								
		i	右に進む・左に	ない	ii	右に	進む	・左に	進む・	どす	5ら1	こも移動し	しない					
	(3)	iii	右に進む・左に進む・どちらにも移動しない								右に進む・左に進む・どちらにも移動しない							
	(4)																	
3		ア					1			1			ゥ					
	(1)																	
		エ			-	\vdash	す						カ					
	(2)				С	(3)				>								
	(4)																	
	(5)									\rightarrow								
4		ア					1						ゥ					
	(1)	т				7	 						カ					
	(2)									→								
	(3)																	

2022 **受験** 般 I A **番号**

解答用紙 [化学]

1	(1)	ア	С	1		N Þ		О		エ	F	オ		Na	
	(1)	カ	Mg	+		\mathbf{S}	ク		Cl		ケ	Ar		П	Ca
	(2)	Ħ	17	シ		1	ス		18		セ	17		ソ	1
	(3)	タ	アルカリ金	属	チ	ハロク	ゲン	/	ッ	貴ガ	ス	(希ガス)	テ		典型

2		ア	アンモニウム	1	水酸化物
	(1)	ゥ	電離平衡	エ	化学平衡
		オ	[NH ₄ ⁺][OH ⁻]/[NH ₃]	(2)	酸
	(3)	i	右に進む・左に進む・どちらにも移動しない	ii	右に進む・左に進む・どちらにも移動しない
	(3)	iii	右に進む・左に進む・どちらにも移動しない	iv	右に進む・左に進む・どちらにも移動しない
	(4)		11.8		

3	(1)	ア	7 7 7 7 7 7			1	アルミナ		ウ 陰			
	(1)	エ	溶融塩電 (融解塩電	• •		オ	ジュラルミン		カ	ミョウバン		
	(2)		5.79×10^{8}	C	(3)		2Al + 6HCl		>	$2AlCl_3 + 3H_2$		
	(4)	表面に緻密な酸化物の被膜を生じ、不動態となるため										
	(5)		Al ³⁺ +	- 3OI	I^-		—→			$Al(OH)_3$		

4	(1)	ア	アルキン	イ	アセチレン(エチン)	ウ	炭化カルシウム (カーバイド)
	(1)	Н	赤褐	オ	1,2-ジブロモエチレン	カ	シスートランス (幾何または立体)
	(2)		$CaC_2 + 2H_2O$		\longrightarrow HC	=(CH + Ca(OH) ₂
	(3)		C = C H Br Br	•	Br C=C Br	•	