学力検査問題 [数学 I ・ II ・ A ・ B] (その 1) (2023-般 I B)

解答はすべて解答用紙に記入せよ。

1 次の文の の中に入れるべき適当な数または式を解答欄に記入せよ。	
(1) 座標平面上で、2次関数 $y = -2x^2 + 12x - 3a$ のグラフが x 軸と共有点をもたないとき、定数 a のとりうる値の囲は a の不等式で	大
(2) 青玉3個と赤玉1個が入っている袋から玉を1個取り出すとき,取り出した玉が赤玉である確率の値は キ てる。いま,青玉と赤玉が入っている袋の中から玉を1個取り出し,取り出した玉が青玉の場合,それを袋の中に戻さす赤玉1個を袋の中に加えて,また,取り出した玉が赤玉の場合,それを袋の中に戻すとともに別の赤玉1個も袋の中加えることを1回の手順とする。袋の中に青玉3個と赤玉1個が入っている状態から開始して,この手順を3回繰り返とき,次の(i)~(iv)の確率(ただし,既約分数で表した確率)が求まる。 (i) 3回の手順中で取り出した玉が1回も赤玉でない確率の値は ク である。 (ii) 3回の手順中で取り出した玉がすべて赤玉である確率の値は ケ である。 (iii) 3回の手順中で1回目だけ,取り出した玉が赤玉である確率の値は コ である。 (iv) 3回の手順が終わった後の袋の中の青玉が1個だけである確率の値は サ である。	に
(3) $10^a = 75$, $10^b = \frac{9}{5}$ とする。このとき, $a = \log_{10}$ ② であるから, $\log_{10} 5 = x$, $\log_{10} 3 = y$ とおくとき, a は y を用いた式で $a = $ ② と表される。また, b は x , y を用いた式で $b = $ ② と表される。したがって, x ,は a , b を用いた式で それぞれ $x = $ ② 」, $y = $ ② と表される。ここで, $10^c = \frac{20}{27}$ とすると, c は a , b をいた式で $c = $ ⑤ と表すことができる。	y
(4) 初項 4 , 公差 3 の等差数列 $\{a_n\}$ の一般項 a_n は n を用いて a_n = ツ と表され、 $\{a_n\}$ の初項から第 n 可での和 S_n は n を用いて S_n =	に J項

学力検査問題 [数学 I ・ II ・ A ・ B] (その 2) (2023-般 I B)

解答はすべて解答用紙に記入せよ。

2 x の 2 次関数 $f(x) = 3x^2 - 2x - 1$ がある。このとき、次の (1), (2) について, (1) は文中の の中に入
れるべき適当な数または式を、(2) は解答の過程と答えを、それぞれ解答欄に記入せよ。
(1) 関数 $F(x) = \int_{1}^{x} f(t) dt$ は x の 3 次式として $F(x) =$ ア と表される。よって, $F(x)$ は $x =$ イ で
極大値 $oldsymbol{\dot{r}}$ をとり, $x=$ $oldsymbol{oldsymbol{L}}$ で極小値 $oldsymbol{oldsymbol{T}}$ をとる。座標平面上で,放物線 $y=f(x)$ と x 軸で囲まれ
た部分の面積を S とするとき, S の値は S $=$ $\boxed{ extbf{ iny D} }$ である。また,放物線 y $=$ $f(x)$ 上の点(a , $f(a)$)における
接線の方程式は $y=($ $) $
(2) 放物線 $y=f(x)$ に点 $(0,-4)$ から引いた 2 本の接線と、放物線 $y=f(x)$ で囲まれた部分の面積を T とする
とき, $m{T}$ の値を求めよ。ただし,解答の過程に関して, (1) で求めた結果は そのまま用いてよい。
(以下の余白は計算用に使ってよい。)

解答用紙 [数学 I • II • A • B] ²⁰²³ | 受験 | 番号 |

1	(1)	ア		1	ρ̈́				オ		ם ל	
	(2)	+	2	1 1	7			#				
	(3)	シ	ス		-	tz				9		
	(3)	チ										
	(4)	ツ		テ		٢		t	=	-		
2	(1)	ア			1		ウ	I		オ		
		カ	+			ク						
		解										
	(2)	答 の										
		過										
		程										
									答	T =		

解答例

1

(1)	ア	a > 6	イ	3	ゥ	18 – 3 <i>a</i>	エ	1	オ	10 - 3a	カ	5

$$\left| \mathcal{F} \right| \qquad 2-a-b$$

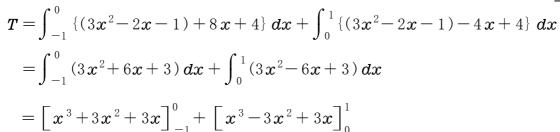
2

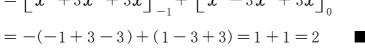
(2) **(**2)

(1)	ア	$x^3 - x^2 - x + 1$			イ	_	$-\frac{1}{3}$	ゥ	32 27	ェ	1	オ	-	0
(1)	カ	32 27	+	6a - 2		ク	3	a^{2}	+ 1					

放物線 y = f(x) に点 (0, -4) から引いた接線と y = f(x) との接点の座標を (a, f(a)) とすると、(1) で求めた接線の方程式 $y = (6a - 2)x - (3a^2 + 1)$ が点 (0, -4) を通るときの定数 a を求めればよい。

$$-4 = -(3a^2 + 1) \Leftrightarrow 3a^2 = 3 \Leftrightarrow a^2 = 1 \Leftrightarrow a = -1, 1$$


a = -1 のとき,接点の座標は (-1, f(-1)) = (-1, 3 + 2 - 1) = (-1, 4),接線の方程式は


$$y = (-6-2)x - (3+1) \Leftrightarrow y = -8x - 4 \cdots$$

a=1 のとき、接点の座標は (1, f(1)) = (1, 3-2-1) = (1, 0)、接線の方程式は

$$y = (6-2)x - (3+1) \Leftrightarrow y = 4x - 4 \cdots 2$$

答 よって、放物線 y=f(x) と2本の接線 ①、② は右の図のようになり、求める面積 T は

