解答はすべて解答用紙に記入せよ。

次の文の の中に入れるべき適当な数または式を解答欄に記入せよ。
(1) 座標平面上の放物線 $y = ax^2 - 4x + b$ は 2 点(0 , -6),(4 , 10)を通るものとする。このとき,定数 a , b の値を 求めると $a = \boxed{P}$, $b = \boxed{I}$ である。したがって,この放物線の頂点の座標の値は(\boxed{D} , \boxed{L})である。さらに,この放物線と x 軸の共有点の x 座標の値は $x = \boxed{I}$, \boxed{D} (ただし, \boxed{I})である。
(2) 段が5段以上ある階段を上るときに、階段の下から1回につき1段または2段(ただし、1段飛ばしの2段)のどちらかの方法で上るものとする。このとき、下から1段目までの上り方は キ 通りしかなく、下から2段目までの上り方は全部で ク 通りある。下から3段目まで上るとき、1回目に2段上った場合は、残りの1段の上り方が キ 通り、1回目に1段上った場合は、残りの2段の上り方が ク 通りであることから、そのときの上り方は全部で ケ 通りある。同様にして、下から4段目までの上り方は全部で コ 通りある。また、下から5段目まで上るとき、下から3段目の段を踏まないような上り方は サ 通りである。
(3) 2次関数 $f(x) = 3x^2 + 6x + 2$ について, $f(x)$ の導関数 $f'(x)$ の式を求めると $f'(x) = $ であり, $f(x)$ の $x = 0$ における微分係数 $f'(0)$ の値を求めると $f'(0) = $ である。したがって, 放物線 $y = f(x)$ 上の点 $(0, f(0))$ における接線の方程式を $y = ax + b$ と表すとき, 定数 a , b の値は $a = $
(4) 初項 3, 公比 2 の等比数列を $\{a_n\}$, 初項 -3 , 公比 2 の等比数列を $\{b_n\}$, 初項 3, 公比 -2 の等比数列を $\{c_n\}$ とする。数列 $\{a_n\}$ の一般項 a_n を a_n = ar^{n-1} と表すとき,定数 a , r の値は a = v , r である。また, a_2 + b_2 , a_3 + a_3 の値を求めると,それぞれ a_2 + a_3 = v である。さらに,自然数 n に対して, v に対して, v = v に対して, v = v = v と表される。

((1)	ア	イ	ゥ	エ	才	カ	

(2)	+	2	ケ	=	サ

(3)	シ	ス	セ	ソ	
(3)	タ		チ		

(4)	ッ	テ	7	ナ	=	

解答用紙 [数学 I・II・A・B]

解答例

(1)	ア	2	イ	-6	ゥ	1	エ	-8	才	-1	カ	3
-----	---	---	---	----	---	---	---	----	---	----	---	---

(2) キ 1 ク 2 ケ 3 コ 5 サ	2
---	---

(3)	シ	6(x+1)	ス		6	セ	6	ソ	2
(3)	タ	$x^3 + 3x$	² +2	x		チ	18		

(4)	ッ	3	テ	2	7	0	ナ	24	=	$1-(-2)^n$
-----	---	---	---	---	---	---	---	----	---	------------